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SUMMARY

The human brain exhibits fundamental limitations in
multitasking. When subjects engage in a primary
task, their ability to respond to a second stimulus is
degraded. Two competing models of multitasking
have been proposed: either cognitive resources
are shared between tasks, or they are allocated to
each task serially. Using a novel combination of
magneto-encephalography and multivariate pattern
analyses, we obtained a precise spatio-temporal
decomposition of the brain processes at work during
multitasking. We discovered that each task relies on
a sequence of brain processes. These sequences
can operate in parallel for several hundred millisec-
onds but beyond �500 ms, they repel each other:
processes evoked by the first task are shortened,
while processes of the second task are either length-
ened or postponed. These results contradict the
resource-sharing model and further demonstrate
that the serial model is incomplete. We therefore pro-
pose a new theoretical framework for the computa-
tional architecture underlying multitasking.

INTRODUCTION

However alert we may be, we can hardly focus onmore than one

task at any one time. The process by which the human brain se-

lects relevant information from the environment has fundamental

temporal constraints, dramatically illustrated in dual-task set-

tings: when subjects focus on a task, this engagement impairs

their ability to initiate the motor response to another stimulus

(the psychological refractory period) (Pashler, 1994) or even to

detect it (the attentional blink) (Raymond et al., 1992). Current

models of dual-task interference agree that (1) performing a

task involves at least three stages (sensory, central decision,

and motor processing; Figure 1A), (2) sensory and motor stages

can operate in parallel with other operations, but (3) the central

stage has limited capacities. A key point of disagreement be-

tween models regards the central stage: the serial bottleneck

model hypothesizes that the central stage is serial; that is, it
processes only one task at a time (Pashler, 1994; Sigman and

Dehaene, 2005) (Figure 1B). By contrast, the resource-sharing

model proposes that the central stage canprocessmultiple tasks

in parallel but possesses limited resources that therefore have to

be shared between tasks (Kahneman, 1973; Tombu and Joli-

coeur, 2003). As the delay between tasks 1 and 2 shortens, the

period during which resources are shared increases, therefore

slowing down both tasks’ processing (Figure 1C).

To understand how the human brain handles multi-task situa-

tions, we investigated three critical predictions that disentangle

the resource sharing and the serial bottleneck models. First,

the resource-sharing model suggests that Task 1 processing is

prolonged during dual tasking, while the bottleneck model pre-

dicts that it remains unchanged. Second, resource-sharing

models propose that the central stages of Task 1 and 2 are per-

formed in parallel, while bottleneckmodels propose that they are

performed one after the other. Third, if capacities are shared, the

amplitude of brain activations associated with central stages

should decrease for both tasks during task overlap. By contrast,

according to the bottleneck model, activation amplitude for the

task that is currently processed should be similar within or

outside the interference period.

Testing these predictions is challenging as it requires simulta-

neouslymonitoring, at thewhole-brain level, eachof the cognitive

processing stages of the two tasks, fromstimulus presentation to

motor response. Recent developments in magnetoencephalog-

raphy (MEG) combined with multivariate pattern analysis

(MVPA) may provide a first approximation of this ideal recording

setup, by isolating and tracking within each subject the neural

patterns specific to eachprocessing stage.MVPAcanbeapplied

to MEG signals by fitting a different classifier on every time sam-

ple separately (Figure 1D). The resulting time course reveals

whether two experimental conditions can be separated based

on the succession of brain responses they elicit and how this in-

formation evolves across time. An important aspect of this tech-

nique is that each classifier trained at time t (thereafter referred to

as ‘‘training time’’) can also be tested on its ability to discriminate

conditions at other time points t’ (‘‘testing time’’). Such temporal

generalization (Figure 1D) is a good way to reveal the onset and

the duration of a given pattern of brain activity, and how it varies

with experimental conditions (King andDehaene, 2014). Here,we

apply this tool to the decomposition of dual-task processes. We

first identify a series of classifiers that decode the successive

steps of each task outside the interference period (i.e., at a long
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Figure 1. Resource-Sharing and Bottleneck Models of Dual-Task Interference

(A) Schematic representations of non-conflicting tasks. Task 1 (blue) and Task 2 (red) are divided in sensory (S), central (C), and motor stages (M).

(B) Serial bottleneck model: the central stage dedicates its full resources to one task at a time and thus performs them one after the other.

(C) Resource-sharing model: tasks are performed in parallel but with reduced effectiveness.

(D) Schematic representation of the decoding analyses. The brain activity is recorded using MEG while subjects perform a dual task. Each task induces a

sequence of patterns of brain activity from the stimulus onset to the motor response, here schematized by three hypothetical stages, S, C, and M. At each time

(legend continued on next page)
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inter-target lag). We then apply the same classifiers to experi-

mental recordings obtained while the same tasks were executed

during the interference period. In this way, we discover which

brain processes are selectively shortened, delayed, reduced, or

abolished during dual tasking.

RESULTS

We applied this method to MEG recordings from a previously

published dual-task experiment (Marti et al., 2012) aimed at

investigating the neural mechanisms common to the attentional

blink and to the psychological refractory period. During the main

dual-task runs, ten subjects had to discriminate, as fast as

possible, one of two target sounds (Task 1), and then one of

two target letters (Task 2) embedded in a series of random letters

(10/s, see Figure 2A). The sound (T1) was separated from the

target letter (T2) by 1, 2, 4, or 9 letters, thereafter called ‘‘Lags

1, 2, 4, and 9,’’ respectively, where each lag lasts for 100 ms.

In a fifth condition, T2 was replaced by a distractor letter (‘‘Dis-

tractor letter’’ condition). Finally, participants performed a sepa-

rate control condition, during which they were instructed to

ignore the sound (‘‘Irrelevant sound’’ condition) (details about

stimuli and experimental procedures can be found in the Supple-

mental Information). All analyses were performed on trials in

which the response to the auditory T1 was first and accurate

(>95% of the trials). Hence, RT1 always refers to the response

time to the auditory task and RT2 always refers to the response

time to the visual task.

Measures of reaction times ondual-task runs revealed a typical

refractory period (Figure 2B): RT2 increased from737ms at Lag 9

to 957 ms at Lag 1 (F(3,27) = 31.70, p < 0.001), while RT1 re-

mained unaffected (621 ms and 622 ms for Lag 9 and Lag 1,

respectively). Subjects’ response accuracy also revealed an

Attentional Blink (Figure 2B). Themeanproportion of unseen trials

increased with decreasing Lag (Lag 9: 21.42%; Lag 1: 37.04%,

F(3,27) = 15.82, p < 0.001) and was larger for slow than for fast

RT1 (main effect of RT1 speed based on a median split:

F(3,27) = 53.16, p < 0.001; Lag 3 RT1 speed interaction:

F(3,27) = 3.18, p=0.04). Thosefindings replicate previous studies

showing that the time spent to process Task 1 influences both the

attentional blink and the psychological refractory period, hence

suggesting that these two phenomena are closely related (Joli-

coeur, 1998, 1999a, 1999b). Nosuch lag effects onT2processing

wereobserved in thecontrol runswhere the soundwas irrelevant,

indicating that the Task 1, rather than the sound itself, was

responsible for the interference onto Task 2.

MEG recordings at Lag 9 revealed two distinct processing

chains for the two tasks. Figure 2A presents the average source

activity at specific time points as well as the time course of activ-

ity measured in three regions of interests located in the primary

auditory cortex, the primary visual cortex, and the primary motor

cortex (see Experimental Procedures). The auditory cortex was

activated by the presentation of the sound �100 ms after stim-
sample, a classifier is trained to separate the conditions of interest. Each classifi

dynamics of the successive patterns of brain activity. The classifiers trained at a l

target lag conditions. The effects of lag on the dynamics of the sequence of bra

models.
ulus onset. The comparison Relevant versus Irrelevant sounds,

aiming at isolating Task 1 processes, revealed activationsmainly

in the parietal cortex from 200 to 600 ms (Figure 2C). The visual

task-elicited activity in the visual cortex cadenced by the presen-

tation of the letters (Figure 2A). The comparison Target versus

Distractor letters, aiming at isolating Task 2 processes, revealed

activity in the ventral visual cortex, which later propagated to the

posterior parietal and frontal cortices from �250 to �900 ms

(Figure 2D). We then used multivariate pattern analyses to inves-

tigate how these activations were affected by dual-task

interference.

Dual-Task Interference Differentially Affects Early and
Late Brain Responses
To uncover the dynamics of Task 1 brain networks, we trained a

series of MVPA classifiers to categorize trials as belonging either

to the Lag 9 condition (where the T1 task was performed in isola-

tion, long before T2 appeared) or to the Irrelevant sound condi-

tion (where the T1 task was not performed; see Experimental

Procedures). Similarly, Task 2 classifiers were trained to discrim-

inate trials as belonging either to the Lag 9 condition (where the

T2 task was performed long after T1) or to the Distractor letter

condition (where the T2 task was not performed). Training two

sets of classifiers, one for each task, allowed us to track the brain

responses underlying Task 1 and Task 2 independently of each

other. We trained at Lag 9 in order to ensure that classifiers

were trained in a condition where Task 1 and Task 2 were per-

formed in near isolation, without causing dual-task interference.

We then tested for generalization to the shorter lags in which

dual-task interference occurred. Since the only difference be-

tween the Lag 9 condition and the other lags is the temporal

delay between the two target stimuli, this procedure minimizes

the differences between the training and testing sets.

In order to sample the sensory, central, and response stages

for each task, we selected classifiers trained at five latencies

(t = 200, 300, 400, 500, and 600 ms). Each classifier trained at

time t was then tested on its ability to categorize the data from

other time points t’. The prediction performance decreased

as the difference between the training time and the testing time

(t-t’) increased (e.g., Figures 2C and 2D). The width of the gener-

alization timewindow reflects the periods duringwhich the differ-

ential brain activity is approximately stable. Each classifier is

specific to a certain pattern of brain activity and the prediction

performance over time reflects the time course of this pattern.

This time course can be characterized by measuring the peak

decoding amplitude, peak latency, onset, and offset in order to

examine the impact of experimental manipulations on these

variables.

In order to unravel the effect of dual-task interference on these

brainprocesses, classifierswere trainedatLag9and thenapplied

to Lags 1–4 as well as to trials in which T2 was undetected (here-

after called ‘‘unseen T2’’). Task 1 processing was mildly affected

by dual-task interference, as the time course of generalization
er can be tested on its ability to generalize to other time samples to reveal the

ong inter-target lag were also tested on their ability to generalize to short inter-

in processes could then be examined and compared to the predictions of the

Neuron 88, 1–11, December 16, 2015 ª2015 Elsevier Inc. 3



Figure 2. Time-Resolved Decoding of Brain Responses during Dual Tasking

(A) Experimental design: subjects had to discriminate a sound and a target letter embedded in a series of distractors. Three regions of interest from the primary

visual, auditory, and motor cortices are depicted below, together with their time courses (for the motor cortex, activation in the hemispheres ipsi- and contra-

lateral to the response handwere subtracted). Dotted black lines represent the rapid serial visual presentations (RSVPs), the sound (T1), and the relevant letter (T2,

at Lag 9) onsets. The blue and red dotted lines represent themean response time for Task 1 and Task 2, respectively. Note that the time courses are time locked to

the relevant events (from top to bottom: the sound onset, the RSVP onset, and the response to Task 1).

(legend continued on next page)
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performance did not vary with lag (Figure 2C). We only found that

the time course of the classifier trained at 600 ms had a slightly

shorter offset when the tasks overlapped, but this effect was

not significant (X2(3) = 5.9, PFDR = 0.20). By contrast, Task 2 pro-

cessing was heavily impacted by the inter-target lag and that this

effect varied according to the processing stage (Figure 2D). The

time courses of the classifiers trained at 200 and 300 ms were

not altered by the inter-target lag. At 400ms, the peak of the pre-

diction performance decreased in amplitude (X2(3) = 18.36,

PFDR < 0.001) and its latency was delayed when the inter-target

lag decreased (X2(3) = 12, PFDR = 0.03). The onset and offset

were also delayed (X2(3) = 13.85, PFDR = 0.02 and X2(3) = 24.09,

PFDR < 0.01, respectively). Similar effects were observed for clas-

sifiers trained at 500ms (peak latency, X2(3) = 17.48, PFDR < 0.01;

onset, X2(3) = 15.12, PFDR = 0.01; offset, X2(3) = 10.2, PFDR = 0.06,

amplitude, X2(3) = 24.12, PFDR < 0.001) and 600ms (peak latency,

X2(3)=15.72,PFDR<0.01;onset,X
2(3) =23.4,PFDR=0.001;offset,

X2(3) = 16.58, PFDR = 0.01, amplitude, X2(3) = 16.44, PFDR < 0.01).

These results show that, at short inter-target lag, late Task

2-related processes were delayed during dual-task interference,

while early processes were left unaffected. Examining Task 1

processing at the same stage did not reveal any evidence of pro-

longed processes. This finding goes against the resource-

sharing model, which predicts that at some stage both tasks

should be prolonged because of shared limited resources.

Contrarily, these results suggest that resources were serially

allocated, first to Task 1, then to Task 2.

The above analyses are limited to a set of classifiers that were

defined a priori. Our next analysis considers the entire sets of un-

folding activations. When applied iteratively to every time sam-

ple, the decoding analysis results in a matrix of temporal gener-

alization (King and Dehaene, 2014). This approach is not

restrained to a priori defined spatio-temporal regions of interest

and provides a synthetic view of the dynamic of each processing

stage.

Dual-Task Interference Shortens Task 1 Processes
Figure 3 shows that Task 1 decoding performance sharply

increased �100 ms after stimulus onset (AUC close to 0.8)

and remained strong until the end of the epoch. The diagonal-

shaped decoding performance in Lag 9 shows that each classi-

fier generalized over a period of time of �200 ms, suggesting

that task processing consisted in a cascade of partially overlap-

ping processes. A first striking aspect of Figure 3A is that the

temporal generalization of Task 1 classifiers was altered at short

lags. The time courses of those classifiers exhibited shorter off-

sets (and therefore shorter durations) in Lags 1, 2, and 4

compared to Lag 9 (Figures 3A and 3B). At Lag 1, the offset

was shortened by 36 ms for a classifier at 516 ms and by

176 ms for a classifier at 736 ms (as compared to Lag 9 offsets).

A significant effect of inter-target lag was observed on the off-
(B) Mean (±SEM) subjects’ response times (top) and accuracy (bottom) as a fun

performance, only trials with accurate Task 1 responses are presented.

(C) Left: sequence of brain activations (0–900ms) related to Task 1 after subtractio

scores compared to baseline) and in the sensors space (magnetometers). Right: te

after T1 onset) in each Lag condition (darker color for shorter Lags). Unseen trials

(D) Same as (C) but for Task 2 after subtraction of the Distractor letter condition.
sets of classifiers later than 288 ms (all PFDR < 0.05). By contrast,

the onsets of these classifiers were left completely unaffected.

This suggests that, although the total processing time of Task

1 was not affected by dual-task interference, the durations of

the successive brain responses were shortened. Our interpreta-

tion is that once a brain area (or a set of areas) transmits informa-

tion to the next one in the chain of processes, it is not abruptly

shut down but instead remains partially active, with a temporally

decaying profile, for a certain period of time. Our data indicate

that this late activation period is shortened by the presence of

Task 2. These results are in contradiction with the resource-

sharing model, which predicted that those stages would be

lengthened.

The processing of Task 1 on unseen T2 trials provides further

evidence. The comparison of Task 1 processes on Lag 9 and on

Lag 1 unseen T2 trials revealed differences neither in the peak

amplitude (all PFDR > 0.48), nor in the latency (all PFDR > 0.19), on-

sets (all PFDR > 0.4), and offsets (all PFDR > 0.7). Thus, while Task

1 processes were shortened on seen T2 trials, they unfolded nor-

mally on unseen T2 trials, as if T2 had not been presented (Fig-

ure 3A). Resource sharing implies that missing T2 should leave

all resources available to T1 and therefore speed up its process-

ing. Instead, the present results suggest that when T2 is unseen,

processing of Task 1 can proceed normally without being short-

ened (see Supplemental Information for a detailed description of

unseen T2 trials). Interestingly, these findings also present a

challenge for the bottleneck model, since they show that Task

1 processing is not immune to dual-task interference.

An alternative interpretation of Task 1 shortening could how-

ever be a different type of causal relation between the two suc-

cessive tasks: trials in which Task 1 duration is longer are more

likely to lead to an unseen T2 (Jolicoeur, 1998; Marti et al.,

2012; Sergent et al., 2005). In such a case, analyzing only the

‘‘seen’’ trials would lead to an apparent shortening of T1 pro-

cessing—an effect that would become increasingly larger at

shorter lags. While such an effect may contribute to our findings,

further analyses suggest that it cannot fully account for the re-

sults. First, RT1 in seen T2 trials was similar in all lag conditions

(p > 0.25). Second, although weaker, the shortening of T1-offset

continued to be observed at Lag 1 relative to Lag 9 when we

analyzed all trials, without sorting them into T2-seen and T2-un-

seen categories (Figure S1).

Another alternative interpretation would be that the shortening

of T1 decoding does not reflect changes in the dynamics of Task

1-related brain responses but instead reflects a change in task-

irrelevant background processes. Since the prediction perfor-

mance produced by a classifier depends on the signal-to-noise

ratio, any change in this prediction could reflect either changes in

the amplitude of the brain response or changes in the noise.

However, a classifier is highly selective of a certain pattern of

brain activity. In fact, any change in the signal measured on
ction of inter-target lag for Task 1 (blue) and Task 2 (red). Regarding Task 2

n of the irrelevant sound condition as shown in the source space (presented in Z

mporal generalization of Task 1-classifiers trained at five latencies (200–600ms

in Lag 1 are represented in black. In these panels, 0 ms represents T1 onset.

Time 0 represents T2 onset.
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Figure 3. Temporal Generalization of Classifiers Reveals How Dual-Task Interference Impacts Task 1 and Task 2 Chains of Processes

(A) Temporal generalization matrices for Task 1 (top rows) and 2 (bottom rows) for each Lag condition and for unseen trials. In each panel, a classifier was trained

at each time sample (vertical axis: training time) and tested on all other time samples (horizontal axis: testing time). The dotted line corresponds to the diagonal of

the temporal generalization matrix, i.e., a classifier trained and tested on the same time sample. For each classifier, we measured the onset, the peak, the offset,

the duration, and the amplitude of the classification time course. Solid lines here represent the median peak latency, onset, and offset of each classifier.

(B) Colored lines indicate themedian difference between Lag 9 and the other lags (dark,medium, and light colors for Lag 1, 2, and 4, respectively). Taking the peak

latency as an example, a value of 0 on the y axis for a given condition means that the peak of the prediction performance had the same timing as in the Lag 9

condition. Negative and positive values indicate that the peak was shifted to earlier and later latency, respectively. Significant differences (signed-rank across

subjects, FDR corrected) between the Lag 9 condition and the other condition of interest are depicted with a thick line. For display purposes, data points were

smoothed using a moving average with a window of five samples.
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MEG sensors that are orthogonal to the classifier’s hyperplane

would by definition not affect prediction performance. Further-

more, it is unclear how irrelevant background activity could

induce a dynamical set of topographies highly similar to the

one evoked by task-relevant brain processes and affect the

evoked decoding performance (see Supplemental Information

for a detailed discussion).

Taken together, these results suggest that the shortening of

Task 1-related decoding time courses truly reflects a termination

of its corresponding processes.
6 Neuron 88, 1–11, December 16, 2015 ª2015 Elsevier Inc.
Dual-Task Interference Impairs and Delays Task 2
Processing
We next examined how Task 2 unfolded during dual-task inter-

ference. Between �200 and �350 ms after T2 presentation,

Task 2 could be successfully decoded. However, the temporal

generalization of each classifier remained weak, indicating that

during this period, target T2 passed through a series of short-

lived brain responses (Figure 3A). After �350 ms, the decoding

performance of Task 2 classifiers was observed over longer

time periods. The inter-target lag impacted only on the offset
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of classifiers trained from 344 ms onward (all PFDR < 0.05, Fig-

ure 3B). For instance, the prediction performance of the classifier

trained at 392 ms was prolonged by 166 ms in Lag 1 as

compared to Lag 9. The onsets and peak latencies were also

affected by dual-task interference from 396 and 400 ms onward,

respectively (all PFDR < 0.05). The direct comparison of Lag 1 and

Lag 9 conditions revealed that the peak performance of a classi-

fier observed at 400 ms in the Lag 9 condition was delayed by

214 ms in the Lag 1 condition, while its onset was delayed only

by 76 ms. The duration of this deflection, i.e., the difference be-

tween the onset and the offset, similarly increased by 80 ms,

although this effect did not reach significance. The delays

observed on the onsets progressively increased for later classi-

fiers (Figure 3B) and became comparable to the ones observed

on peak latency for classifiers >500 ms. For instance, a classifier

trained at 536ms revealed a time coursewith similar delays on its

onset and peak latency (152 ms and 148 ms, respectively).

Furthermore, the delay and prolongation decreased as the in-

ter-target lag increased. For instance, a classifier trained at

536 ms saw its peak being delayed by 97 ms in the Lag 2 condi-

tion as compared to the Lag 9 condition and by only 2 ms in the

Lag 4 condition. Finally, correlating the single-trial time courses

of each classifier with subjects’ reaction time revealed that

peak latencies, onsets, and offsets of late classifiers (>500 ms)

were positively correlated with RT2 at both Lag 9 and Lag 1.

Interestingly, the prediction performances of the same classifiers

were also positively correlated with RT1 but specifically at Lag 1

and not at Lag 9 (Figure S2).

Taken together, these findings indicate that between�350 ms

and�450 ms, Task 2 brain responses were not only delayed but

also prolonged in time. Beyond �500 ms, however, brain re-

sponses were mainly delayed. In fact, this delay could be

observed at the single-trial level and was directly related to a

delay in subjects’ motor response, suggesting serial processing.

Only Task 2 Is Impaired during Dual-Task Interference
According to the resource-sharing model, the allocation of

limited resources should not only prolong the execution of

both tasks, but it should also decrease the amplitude of their

brain activations. As the amplitude of neural responses directly

affects signal-to-noise ratio, this predicts that decoding perfor-

mance should decrease for both tasks. However, Task 1 decod-

ing performance was similar at all Lag conditions (all PFDR > 0.25

between 200 and 600 ms, overall AUC > 0.7, Figure 3B). We only

observed decreased performance for very late classifiers

(>664 ms, i.e., after the motor response to T1) at Lag 1 (all

PFDR < 0.05). By contrast, Task 2 decoding performance strongly

decreased in all short-lag conditions compared to the Lag 9 con-

dition. A significant drop in decoding performance was observed

for classifiers later than 348 ms (all PFDR < 0.05) and was partic-

ularly pronounced at the shortest lag (Figure 3B). Together, the

preservation of Task 1 decoding performance and the impair-

ment of Task 2 decoding performance suggest that cognitive

resources were not shared between tasks but were serially allo-

cated, first to Task 1 and subsequently to Task 2.

An alternative interpretation would be that the decreased Task

2 decoding performance is unrelated to the amplitude of the

brain response. Classifiers trained in a condition where the tasks
were performed in isolation might not perform as well in a condi-

tion where multiple patterns of brain activity overlap. However,

two topographies can overlap in time without any impact on

the decoding performance of their corresponding classifiers if

they are generated from independent sources (Figures S4A

and S4B). We tested the selectivity of the classifiers used in

the present study and found that Task 1 classifiers were not

able to decode Task 2-related information and vice versa (Fig-

ures S4C and S4D). This suggests that the two sets of classifiers

were orthogonal to each other and that the decrease in Task 2

decoding performance was genuinely related to a decrease in

the amplitude of Task 2-related brain responses.

Taken together, the effects of dual-task interference on Task 1

and Task 2 processing depict a complex cognitive architecture

in which the execution of a task consists of a sequence of pro-

cesses partially overlapping in time. The design of the present

experiment does not allow for a complete separation of each

processing stage. However, the results revealed that these pro-

cesses have different dynamics. Figure 4 allows a direct compar-

ison of Task 1 and Task 2 processing dynamics and provides an

overview of dual-task interference: processes are first organized

in parallel and become serial only at a late stage (>500ms). How-

ever, those late Task 1 and Task 2 processes were not merely

performed one after the other but also repelled each other, a

property that was not predicted by existing models of dual

tasking.

DISCUSSION

The present study aimed at understanding the brain mecha-

nisms deployed to handle multiple tasks that overlap in time.

Specifically, we tested the respective predictions of the two

dominant models accounting for dual-task interference: serial

bottleneck versus resource sharing. The results revealed that

task processing is best understood as a chain of distinct proces-

sors. The chains of processes for Task 1 and 2 operated in par-

allel for several hundreds of milliseconds. Following this period,

Task 1 processes were shortened while Task 2 processes

were either hindered and prolonged or fully delayed. This sug-

gests a ‘‘collision’’ between chains of processes: Task 1 and

Task 2 late processes repelled each other. Those results strongly

argue against the resource-sharing model but also show that the

serial bottleneck model is incomplete. Consequently, we pro-

pose an alternativemodel of dual-task interference incorporating

parallel and serial processing, and in which Task 1 and Task 2

processes actually compete for attentional resources and

access to consciousness.

The Profiles of Task 1 and Task 2 Brain Responses
Disconfirm the Resource-Sharing Hypothesis
Our findings revealed that Task 2 processes located in the

ventral visual stream and in the posterior parietal cortex oper-

ated in parallel to Task 1 up to �350 ms after stimulus onset.

Between �350 and �450 ms, activations in the parietal cortex

increased and extended to the temporo-parietal area. Decoding

analyses revealed that these brain responses were observed in

parallel to Task 1 but were prolonged in time while their ampli-

tude decreased. This might correspond to a period in which
Neuron 88, 1–11, December 16, 2015 ª2015 Elsevier Inc. 7



Figure 4. Direct Comparison of Task 1 and Task 2 Processing Dynamics during Dual-Task Interference

(A–D) Task collision in Lag 9 to 1. In each panel, the surface is delimited by the measured onset and offset of the prediction performance of each classifier (blue:

Task 1, red: Task 2). Colored dots indicate significant differences between the Lag 9 condition (peak latency, onset, and offset) and the condition of interest

(signed rank tests, FDR corrected). T1 is presented at time 0 and the corresponding diagonal is represented by a dashed line. Small black segments on this

diagonal indicate T1 onset on x and y axes. Task 2 is represented similarly except that T2 onset varies in each panel. On the right of each panel are represented the

time courses of classifiers (blue, Task 1; red, Task 2) trained at 300, 400, and 500 ms. The thick lines represent an AUC significantly different from chance level

(FDR corrected). The gray dotted lines indicate the training time of each classifier.
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limited resources are shared between tasks. However, Task 1

brain responses had shorter durations in Lags 1–4 compared

to Lag 9 and this effect vanished when T2 was not consciously

perceived. This finding contradicts the predictions of the

resource-sharing model. Even if the totality of resources was

successively allocated to each task, therefore emulating a serial

bottleneck (Tombu and Jolicoeur, 2003), the model would not

explain the fact that Task 1 processes were selectively short-

ened by the presence of Task 2. Therefore, these results suggest

a competition between Task 1 and 2 rather than a sharing of

limited resources.

Dual-Task Interference Cannot Be Fully Explained by a
Serial Bottleneck
These results also challenge the classical serial bottleneck hy-

pothesis, which typically proposes that Task 1 monopolizes

attentional resources and therefore should not be affected by

Task 2. The present results show instead that Task 1 is not im-

mune to dual-task interference and that Task 2 can actually

infringe on Task 1 processing.

Although these results are not compatible with the typical view

of a bottleneck, we found that Task 2 processes beyond

�450 ms exhibited a clear serial profile: Task 1 and Task 2 brain

activations were observed one after the other and barely over-

lapped. This is consistent with previous studies that showed
8 Neuron 88, 1–11, December 16, 2015 ª2015 Elsevier Inc.
that the lack of resources during Task 2 processing postponed

late brain activity (i.e., the P3 component of the ERPs) (Dell’ac-

qua et al., 2005; Sergent et al., 2005; Vogel et al., 1998). How-

ever, these studies were limited to the specific ERP components

that they focused on, based on a priori knowledge of their latency

and topography. The complete decomposition of tasks process-

ing provided here reveals that Task 1 processes were shortened,

while Task 2 processes were first diffused and then delayed (Vul

et al., 2008). This suggests that the late processes of Task 1 and

Task 2 repelled each other during dual-task interference. There-

fore, the typical view of the serial bottleneck may have to be

rethought in order to explain our findings.

Reconsidering the Brain’s Limitations to Multitasking
Our approach goes beyond the typical three-stage division of

sensory, central, and motor processing stages. Instead, the re-

sults revealed a series of distinct processes that could operate

in parallel to another task, rather than a single sensory stage.

Furthermore, contrary to the classic depiction of a single central

stage that would operate serially, we found evidence of multiple

central processes that each exhibited a serial mode of func-

tioning. Consequently, we propose a new theoretical framework

that incorporates both parallel and serial processes and explains

the present findings. We suggest that during the interference

period, Task 2 is not passively waiting for the completion of



Please cite this article in press as: Marti et al., Time-Resolved Decoding of Two Processing Chains during Dual-Task Interference, Neuron (2015),
http://dx.doi.org/10.1016/j.neuron.2015.10.040
Task 1. Instead, it competes for cognitive resources—much like

two images compete for visibility during binocular rivalry. Specif-

ically, when two incoming targets compete for top-down

attentional signals from the posterior parietal cortex and the

temporo-parietal area, inhibitory interactions may shorten Task

1-related processes on the one hand, and weaken and hinder

the attentional engagement on Task 2 on the other hand (Dux

and Marois, 2009; Nieuwenstein et al., 2005). The task that re-

ceives the strongest attentional enhancement triggers activation

in parietal and frontal areas, allowing subjects to maintain and

access the stimulus consciously.

This model fits well with the global neuronal workspace theory

of consciousness (Dehaene et al., 1998; Sergent and Dehaene,

2004), which associates conscious perception to the synchro-

nized activation of a large fronto-parietal network that broad-

casts information in the cortex.Within this framework, our results

suggest that although Task 2 competes with Task 1, it is inhibited

during Task 1 processing, and the related sensory information is

temporarily stored in a decaying sensory buffer (Marti et al.,

2012; Sergent et al., 2005; Zylberberg et al., 2010). The atten-

tional engagement on Task 2 is weakened and its conscious rep-

resentation is delayed. Whether Task 2 will be consciously

perceived or not depends on a balance between the duration

of Task 1 processing and the degradation of Task 2 information

in the buffer (Marti et al., 2012). If Task 2-related sensory activity

is strong enough and Task 1 execution fast enough, then Task 2

can be accessed consciously although with a delay (Marti et al.,

2010). Otherwise, this stimulus remains unperceived (attentional

blink).

In conclusion, the decomposition of brain processes

described in the present study revealed a surprisingly subtle

functional architecture at play during multitasking. The architec-

ture, simultaneously involving parallel and serial chains of pro-

cesses, is a step toward a better comprehension of how the brain

deploys attention over a continuous flow of sensory information

and how this impacts the conscious representation of a stimulus.

EXPERIMENTAL PROCEDURES

Subjects

The MEG recordings of ten participants previously analyzed in Marti et al.

(2012) were included in the present analyses. The study was approved by

the ‘‘Comité de Protection des Personnes’’ and all participants gave informed

and written consents before testing and received a compensation of 120V for

their participation.

Experimental Protocol

Subjects performed a dual-task experiment composed of an auditory discrim-

ination task (Task 1) and a visual discrimination task (Task 2) (Figure 2A). Sub-

jects first had to discriminate a sound with a high (1,100 Hz) or a low (1,000 Hz)

pitch presented for 84 ms. The second Task was to identify a black letter (Y or

Z, 0.64�) embedded in a visual stream of 12 random black letters (duration:

34 ms separated by blank interval of 66 ms) presented on a white background

(‘‘Rapid Visual Stream Presentation’’ [RSVP]). The sound was presented

together with the third item of the stream and separated from the target letter

by 1, 2, 4, or 9 letters (‘‘Lags 1, 2, 4, and 9,’’ respectively). In addition, a con-

dition in which T2 was replaced by a ‘‘distractor letter’’ was also included. In

a separate block, participants performed a control condition in which they per-

formed the visual task but were instructed to ignore the sound (‘‘Irrelevant

sound’’ condition). Subjects were instructed to respond as fast as possible first

to the sound, then to the letter. Subjects were also informed that sometimes
the target letter would be absent, in which case they should not give any

response. Trials in which T2 was presented but the participant failed to detect

it were classified as ‘‘unseen.’’

Trials started with the word ‘‘GO’’ (500 ms), followed by a fixation cross

(1,000 ms). The rapid visual stream then started. Following the RSVP, a blank

screen was presented for 3,000 ms before the beginning of the next trial. The

experiment consisted of two training blocks (20 trials each) followed by five

experimental blocks. In four blocks (100 trials each), subjects performed

both Task 1 and 2, resulting in 80 trials by inter-target Lag condition, and in

one block (50 trials) subjects performed only the visual task (i.e., irrelevant

sound condition). The order of the blocks was counterbalanced between sub-

jects. Subjects’ responses to Tasks 1 and 2, provided with their left and right

middle and index fingers were counterbalanced across subjects (6/10 using

left hand to respond to sounds).

MEG Recordings and Preprocessing

Subjects’ brain activity was recorded with a 306-channel whole-head

magneto-encephalography system (Elekta Neuromag, 102 magnetometers

and 102 pairs of orthogonal planar gradiometers) while performing a dual-

task protocol. Head position wasmeasured before each block with an isotrack

polhemus system to compensate for head movements between blocks. Elec-

tro-oculogram and electro-cardiogram were continuously recorded during the

experiment for offline rejection of eye movements and cardiac artifacts. Sam-

pling rate was set to 1,000 Hz with an analog band-pass filter from 0.1 to

330 Hz. MaxFilter Software (Elekta Neuromag) was used to compensate for

head movements, to interpolate bad channels, and to perform a signal space

separation (Taulu et al., 2004) so as to minimize the magnetic interference

external to the MEG helmet. The Fieldtrip package (Oostenveld et al., 2011)

(http://fieldtrip.fcdonders.nl/) was used with MATLAB 7.11 for epoching, trial

rejection, and baseline correction. Independent component analyses were

applied separately to each type of sensor. To identify the components related

to the cardiac artifact and to the eye movements, we computed correlations

between each component and the ECG and between each component and

the EOG and visually inspected their topography. Once identified, these com-

ponents were subtracted out from the raw data. Signals were low-pass filtered

below 30 Hz and down-sampled to 250 Hz.

Source Localizations

For each subject, an anatomical MRI (3T Siemens MRI scanner with a resolu-

tion of 1 3 1 3 1.1 mm) was acquired after the MEG acquisition. Subjects’

head was digitized and tracked within the MEG helmet in order to co-register

MEG signals with subjects’ anatomy. Gray and white matters were then

segmented with BrainVISA/Anatomist software tools (Geffroy et al., 2011)

(http://brainvisa.info). Subjects’ head and cortical surfaces were recon-

structed with the Brainstorm software (Tadel et al., 2011) (http://neuroimage.

usc.edu/brainstorm/). Models of the cortex and the head were used to esti-

mate the current-source density distribution over the cortical surface. The for-

ward modeling was computed using overlapping spheres analytical model.

Weighted minimum norm estimate (wMNE) was used for inverse modeling

(depth-weighting factor: 0.5; dipole orientation constrained to be normal to

the cortex).

In order to perform group analyses, we projected individual source estimate

data on the standard MNI anatomical template. The contrasts between the

conditions of interest were then computed. MEG signals are presented in Z

scores relative to baseline and spatially smoothed over five neighboring

vertices. Regions of interest (see Figure 2A) were visually defined a priori in

the left and right primary auditory cortex (144 vertices), the primary visual cor-

tex (276 vertices), and the primary motor cortex (208 vertices) with Brainstorm.

Multivariate Pattern Analyses

Time-Resolved MVPA

When comparing two experimental conditions, the difference in brain activa-

tions results in a series of specific topographical patterns at the sensor level.

When applying MVPA to MEG or EEG data, it is possible to train a classifier

at each time sample within each subject to isolate the topographical patterns

that best differentiate the two conditions. In the present study, MVPA

were applied using Scikit-Learn (Pedregosa et al., 2011). A 5-fold stratified
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cross-validation procedure was used for within-subjects analyses. For a given

time sample, the MEG data were randomly split into 5 folds of trials and

normalized (Z score of each channel-time feature within the cross-validation).

The same proportion of each class was kept within each fold (stratification). A

linear support vector machine (SVM [Chang and Lin, 2001]) was trained with a

penalty parameter C fixed to 1 on 4 folds and tested on the left out trials in order

to find the hyperplane (in this case a topography) that best separated the two

classes without overfitting. A weighting procedure was applied in order to

equalize the contribution of each class to the definition of the hyperplane.

This procedure was iteratively applied for each time sample of each fold.

Generalization across Time

Classifiers trained at each time sample were also tested on their ability to

discriminate conditions at all other time samples. The complete ‘‘temporal

generalization’’ (King and Dehaene, 2014; King et al., 2014) results in a ma-

trix of training time 3 testing time. The diagonal of this matrix corresponds

to classifiers trained and tested on the same time sample. Training one

classifier at time t and generalizing it time t’ was performed within the

cross-validation so that t and t’ data came from independent sets of trials.

An exemplary code for this temporal generalization pipeline can be found at

http://martinos.org/mne/stable/auto_examples/decoding/plot_decoding_

time_generalization.html.

Generalization across Conditions

In order to track Task 1-related and Task 2-related brain responses indepen-

dently of each other, a series of MVPA classifiers were trained to categorize tri-

als belonging either to the Lag 9 condition (where Task 1was performed in near

isolation) or to the Irrelevant sound condition (where Task 1 was not per-

formed). Following the same logic, another series of classifiers were trained

to discriminate trials belonging either to the Lag 9 condition (where Task 2

was performed in near isolation) or to the Distractor letter condition (where

Task 2 was not performed). To evaluate how these brain responses were

affected by the inter-target lag, we then applied the same classifiers to Lags

1–4 trials as well as to unseen T2 trials.

Statistical Analyses

For each test trial, classifiers generated a probabilistic output (Platt, 1999) to

provide a continuous estimate comparable across subjects. Non-parametric

effect sizes are reported with an area-under-the-curve (AUC) computed

from the receiver operative curves (ROC), and representing predictions of

true positives (e.g., a trial was correctly predicted to belong to Lag 9 condition)

and predictions of false positives (e.g., a trial was incorrectly predicted to

belong to Lag 9 condition). An AUC of 0.5 corresponds to chance level as it

means that true positive and false positive are equiprobable. Conversely an

AUC of 1 means a perfect prediction of a given class. AUC below 0.5 can oc-

casionally be observed when classifiers are generalized across time or condi-

tion. This means that the probability of false positives is higher than the prob-

ability of true positives. In the context of M/EEG recordings, this can be

explained by a reversal of the polarity of a given topographical pattern between

the training time and the testing time (King et al., 2014).

Statistical analyseswereperformedacrosssubjects,overa temporalwindow

starting 200 ms before stimulus onset (either T1 or T2) and ending 1,100 ms

after. We used signed rank tests with a threshold set at alpha = 0.05 to assess

whether classifiers could predict the trials’ classes above the chance level (0.5).

A correction for multiple comparisons was then applied with a false discovery

rate (FDR).

Peak Measurement

For each subject, wemeasured the amplitude, the peak latency, the onset, and

the offset of each classification time course. Data were first low-pass filtered at

10 Hz and the analyses were restrained to a 200–1,000 ms time window in

which decoding performance was high in all experimental conditions. To mea-

sure the amplitude and the latency of the peak, we considered all time points

for which the decoding performance exceeded the 95th percentile of the distri-

bution. The median of these time points was considered as the peak latency

and the median AUC as the peak amplitude. Although these estimators are

not unbiased, themethod allowed us to avoid numerical instabilities. The onset

was defined by stepping backward from the peak and identifying the time point

at which the AUC exceeded a threshold percentage of the peak. The choice of

the threshold being arbitrary, we tried several values: 10%, 30%, and 50% of
10 Neuron 88, 1–11, December 16, 2015 ª2015 Elsevier Inc.
the difference between the mean AUC during the baseline period (from

�200ms to stimulus onset) and the peak amplitude. As the results were similar

across values, we then kept the threshold to 50%. Similarly, the offset of the

prediction performance was defined as the first time sample following the

peak whose AUC was inferior to the threshold. In sum, this analysis resulted

in four values (peak latency, onset, offset, and amplitude) for each training

time that could be compared between conditions.

Statistical Analyses

The effect of the inter-target lag on these variables was evaluated at each time

sample (across subjects) with Friedman tests. A correction for multiple com-

parisons (FDR) was then applied over time. We also directly compared peak

measurements obtained from each short lag condition (1, 2, and 4) to the

Lag 9 condition (see Figure 3B) with signed rank tests with FDR correction

applied over time.
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